Плотность грунтовки
Физические свойства грунтов
1.2.1. Характеристики плотности грунтов и плотности их сложения
Одной из основных характеристик грунта является плотность. Для грунтов различают: плотность частиц грунта ρs - отношение массы сухого грунта (исключая массу воды в его порах) к объему твердой части этого грунта; плотность грунта ρ - отношение массы грунта (включая массу воды в порах) к занимаемому этим грунтом объему; плотность сухого грунта ρd - отношение массы сухого грунта (исключая массу воды в его порах) к занимаемому этим грунтом объему (включая имеющиеся в этом грунте поры). Плотность частиц песчаных и пылевато-глинистых грунтов приведена в табл. 1.2.
ТАБЛИЦА 1.2. ПЛОТНОСТЬ ЧАСТИЦ ρs ПЕСЧАНЫХ И ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ
Грунт ρs, г/см3 диапазон средняя Песок 2,65-2,67 2,66 Супесь 2,68-2,72 2,70 Суглинок 2,69-2,73 2,71 Глина 2,71-2,76 2,74Плотность грунта определяется путем отбора проб грунта ненарушенного сложения и последующего анализа в лабораторных условиях. В полевых условиях плотность грунта определяется зондированием и радиоизотопным методом, а для крупнообломочных грунтов - методом «шурфа-лунки».
Плотность сложения грунта (степень уплотненности) характеризуется пористостью n или коэффициентом пористости е и плотностью сухого грунта (табл. 1.3).
ТАБЛИЦА 1.3. РАСЧЕТНЫЕ ФОРМУЛЫ ОСНОВНЫХ ФИЗИЧЕСКИХ ХАРАКТЕРИСТИК ГРУНТОВ
Характеристики Формула Плотность сухого грунта, г/см3 (т/м3) ρd = ρ/(1 + w) Пористость % n = (1 - ρd /ρs)100 Коэффициент пористости e = n/(100 - n) или e = (ρs - ρd)/ρd Полная влагоемкость ω0 = eρw /ρs Степень влажности Число пластичности Ip = ωL - ωp Показатель текучести IL = (ω - ωp)/(ωL - ωp)Плотность сложения песчаных грунтов определяется также в полевых условиях с помощью статического и динамического зондирования.
1.2.2. Влажность грунтов и характеристики пластичности пылевато-глинистых грунтов
Влажность грунтов определяют высушиванием пробы грунта при температуре 105°С до постоянной массы. Отношение разности масс пробы до и после высушивания к массе абсолютно сухого грунта дает значение влажности, выражаемое в процентах или долях единицы. Долю заполнения пор грунта водой - степень влажности Sr рассчитывают по формуле (см. табл. 1.3). Влажность песчаных грунтов (за исключением пылеватых) изменяется в небольших пределах и практически не влияет на прочностные и деформационные свойства этих грунтов.
Характеристики пластичности пылевато-глинистых грунтов - это влажности на границах текучести ωL и раскатывания ωp, определяемые в лабораторных условиях, а также число пластичности Ip и показатель текучести IL вычисляемые по формулам (см. табл. 1.3). Характеристики ωL, ωp и Iр являются косвенными показателями состава (гранулометрического и минералогического) пылевато-глинистых грунтов. Высокие значения этих характеристик свойственны грунтам с большим содержанием глинистых частиц, а также грунтам, в минералогический состав которых входит монтмориллонит.
- Предыдущая
- Следующая
- Оглавление
Требования к плотности грунтов
Для грунта, находящегося в трехфазном состоянии (скелет + вода + воздух), без учета его структурных особенностей единичный объем составит:
?ск/?+W?ск/100+?/100=1,
где ? — плотность грунта, г/см3; W — влажность грунта, %; ? — объем воздуха, остающийся в порах грунта после уплотнения, %; 1—единичный объем грунта (1 см3); ?ск — плотность сухого грунта, г/см3.
Отсюда, основную характеристику уплотнения грунта (в сухом состоянии), т. е. его плотность определяют по формуле
?ск =(1-?) ?/(100+W?).
Плотность грунта, влажность и содержание воздуха зависят от его генезиса, степени дисперсности, природных условий местности, нагрузки от колес автомобилей и ряда других факторов. Плотность пылеватой супеси составляет 2,66 г/м3, легкой — 2,68, легкого пылеватого суглинка — 2,69 и тяжелого суглинка — 2,71, пылеватой глины -2,72 и жирной глины —2,71. В зависимости от зернистости грунтов изменяется и содержание воздуха: в песчаных грунтах — 8—10 %, в супесчаных —6—8 %,
в суглинках, в том числе и черноземных, — 4—5 % и в жирных глинах — 4—6 %.
Влияние влажности значительнее для более дисперсного грунта. Высокодисперсные грунты широко распространены в СССР. Такие грунты обладают большой удельной поверхностью, высоким значением влагоемкости и морозного пучения и т. д. (гл. 7.2).
Оптимальная влажность Wо — влажность, соответствующая максимальной плотности грунта ?max при наименьшей затрате энергии на уплотнение. При такой влажности вода в порах грунта находится в адсорбированном состоянии и пористость соответствует объему воды, находящейся в ней, т. е. грунт представляет собой, согласно механике грунтов, грунтовую массу (см. рис. 11.2).
В СССР разработан стандартный метод определения значений Wо и ?max, подробно рассматриваемый в курсе грунтоведения и механики грунтов. Характерные для стандартного уплотнения графики зависимости плотности сухого грунта от влажности представлены на рис. 11.3.
Если затратить больше энергии на уплотнение, то снизится объем защемленного воздуха и воды, а потому повысится плотность грунта. Кривые зависимости между плотностью и влажностью будут располагаться ближе к верхнему левому углу графика. Соединив между собой точки наибольших значений плотности сухого грунта рек, получим прямую под углом а к горизонтали, характеризующую ход изменения оптимальной влажности (см. рис. 11.3). Для повышения модуля упругости грунтов во многих странах стремятся повысить требования к плотности. В частности, в США грунты уплотняют при меньшем значении оптимальной влажности, чем в СССР, за счет большей затраты энергии на уплотнение (кривая 2). Но при увеличении влажности выше оптимального значения резко снижается плотность сухого грунта, причем характер снижения совершенно одинаков независимо от энергии, затраченной на уплотнение (кривые 3).
Максимальная плотность грунта по методу стандартного уплотнения. Критерий «максимальная плотность» соответствует механическому уплотнению, например, связанных грунтов, когда вся вода в них находится в адсорбированном состоянии и пористость соответствует объему поровой воды. Из анализа рис. 11.3 видно, что метод стандартного уплотнения является условным. Прочностные характеристики (модуль упругости грунта E0, трение ? и сцепление С, установленные при плотности, соответствующей методу стандартного уплотнения, значительно ниже, чем, например, по модернизированному методу Проктора *, применяемому в США и других странах (рис. 11.4). Согласно этому методу грунт уплотняют при значительно большей затрате энергии, чем у нас.
* Модернизированный метод широко применяют во многих странах. От нашего метода стандартного уплотнения он отличается тем, что грунт уплотняют хотя и в таком же металлическом стакане, но гирей массой 4,55 кг в 5 слоев с общим количеством ударов 125. У нас же сбрасывают гирю массой всего 2,5 кг и уплотняют грунт в 3 слоя.
Коэффициент уплотнения связного грунта по модернизированному методу, равный, предположим, Ко=1, соответствует методу стандартного уплотнения Ко=1,1 т. е. требования к плотности грунтов более жесткие, чем в СССР.
Плотность грунтов
Телефон Строительной испытательной Лаборатории (499) 973-47-69
Плотность грунтов характеризует их состояние. Это одно из наиболее важных физических свойств грунта. Плотность вычисляется соотношением массы грунта к занимаемому им объёму. Инженерная геология определяет плотность грунтов по нескольким составляющим: плотностью грунта ?, плотностью твёрдых частиц грунта ?s и плотностью скелета ?d. Обычно плотность грунтов определяют в г/см3 или кг/м3.
Лаборатория ООО «Желна» досконально исследует плотность грунтов. Эффективное исследование дает четкую характеристику, которая включает в себя рассчитанное удельное давление на грунт, сопротивление грунта, рассчитанный коэффициент уплотнения грунта и итоговую плотность грунта.
Плотность твердых частиц (?s) подразумевает среднюю плотность минеральных, органических, а также минерально-органических веществ, входящих в состав. Численно это можно представить в виде отношения объема твердых частиц к массе грунта. Плотность грунтов зависит от минерального и органического состава грунта. Если увеличивается содержание тяжелых элементов в грунте, то, соответственно, увеличивается и показатель его плотности. А органические вещества, напротив, значительно снижают показатель плотности грунта. Если грунт не содержит растворимых солей, органических веществ и подобных примесей, то его плотность остается неизменной. В связи с этим чаще всего используются усредненные значения при операциях с расчетами. Например, для глины этот показатель составляет 2,74 г/см3, для суглинков – это 2,71 г/см3, для песчаного грунта - 2,66 г/см3, а для суглинков плотность грунта составляет 2,71 г/см3.
Лаборатория ООО «Желна» подробно исследует грунты и проведет все необходимые процедуры для более точного и детального изучения грунтовых проб. Наши специалисты вычислят коэффициент уплотнения грунта, его плотность и сопротивление.
Плотность грунтов (?) – это его объемная масса или плотность влажного материала. Она выражается в массе единичного объема при естественной влажности грунта и при ненарушенном природном положении. Плотность грунтов зависит от характера сложения, минеральных составляющих грунта, а также пористости и влажности грунта. При увеличении количества минеральных примесей плотность грунтов увеличивается, а при увеличении количества веществ органического происхождения плотность уменьшается. При отборе грунта для исследования необходимо учитывать, что грунт должен быть постоянно влажным. Это важное условие, которое поможет более точно и эффективно исследовать грунт. Плотность может широко варьироваться (от 1,30 до 2,20 г/см3). Непостоянным также будет удельное давление на грунт. Грунты, содержащие цементационные и кристаллизационные связи в частичках обладают значительно более высокой плотностью. Эта плотность приближена к плотности твердых частиц с малой степенью пористости.
Плотность скелета грунтов (?d) представляет собой массу твердых элементов на единицу объема грунта при естественной ненарушенной структуре. Удельное давление на грунт будет зависеть от пористости и минерального состава.
Высококвалифицированные специалисты лаборатории ООО «Желна» помогут определить плотность при любом строительстве. Эту процедуру необходимо проводить независимо от назначения предполагаемого сооружения. Это нужно для оптимального значения коэффициента уплотнения грунта и сопротивления грунта. Исследование проводится как в полевых, так и в лабораторных условиях. Правильное и подробное изучение поможет определиться с технологией будущего строительства. С помощью наших специалистов Вы избежите множество проблем, связанных с грунтом. Это, в свою очередь, поможет сэкономить Вам силы и средства.
Телефон Строительной испытательной Лаборатории (499) 973-47-69
Наша строительная лаборатория обладает следующим спектром услуг:Грунт — википедия
Ниже приведены термины, определённые в ГОСТ 25100-95.[1]
Антропогенные образования — твёрдые отходы производственной и хозяйственной деятельности человека, в результате которой произошло коренное изменение состава, структуры и текстуры природного минерального или органического сырья.
Бытовые отходы — твёрдые отходы, образованные в результате бытовой деятельности человека.
Гранулометрический состав — количественное соотношение частиц различной крупности в дисперсных грунтах. Определяется по ГОСТ 12536-79.
Грунт дисперсный — грунт, состоящий из отдельных минеральных частиц (зёрен) разного размера, слабосвязанных друг с другом; образуется в результате выветривания скальных грунтов с последующей транспортировкой продуктов выветривания водным или эоловым путём и их отложения.
Грунт глинистый — связный минеральный грунт, обладающий числом пластичности Ip >= 1.
Грунт заторфованный — песок и глинистый грунт, содержащий в своем составе в сухой навеске от 10 до 50 % (по массе) торфа.
Грунты, изменённые физическим воздействием, — природные грунты, в которых техногенное воздействие (уплотнение, замораживание, тепловое воздействие и т. д.) изменяет строение и фазовый состав.
Грунты, изменённые химико-физическим воздействием, — природные грунты, в которых техногенное воздействие изменяет их вещественный состав, структуру и текстуру.
Грунт крупнообломочный — несвязный минеральный грунт, в котором масса частиц размером крупнее 2 мм составляет более 50 %.
Грунт мёрзлый — грунт, имеющий отрицательную или нулевую температуру, содержащий в своём составе видимые ледяные включения и (или) лёд-цемент и характеризующийся криогенными структурными связями.
Грунт мёрзлый распученный — дисперсный грунт, который при оттаивании уменьшает свой объём.
Грунт многолетнемёрзлый (синоним — грунт вечномёрзлый) — грунт, находящийся в мёрзлом состоянии постоянно в течение трёх и более лет.
Грунт морозный — скальный грунт, имеющий отрицательную температуру и не содержащий в своём составе лёд и незамёрзшую воду.
Грунт набухающий — грунт, который при замачивании водой или другой жидкостью увеличивается в объёме и имеет относительную деформацию набухания (в условиях свободного набухания) ?sw >= 0,04.
Грунт охлаждённый — засолённый крупнообломочный, песчаный и глинистый грунты, отрицательная температура которых выше температуры начала их замерзания.
Грунт пластичномёрзлый — дисперсный грунт, сцементированный льдом, но обладающий вязкими свойствами и сжимаемостью под внешней нагрузкой.
Грунт просадочный — грунт, который под действием внешней нагрузки и собственного веса или только от собственного веса при замачивании водой или другой жидкостью претерпевает вертикальную деформацию (просадку) и имеет относительную деформацию просадки ?sl >= 0,01.
Грунт пучинистый — дисперсный грунт, который при переходе из талого в мёрзлое состояние увеличивается в объёме вследствие образования кристаллов льда и имеет относительную деформацию морозного пучения ?fh >= 0,01.
Грунт полускальный — грунт, состоящий из одного или нескольких минералов, имеющих жёсткие структурные связи цементационного типа.
Грунт скальный — грунт, состоящий из кристаллитов одного или нескольких минералов, имеющих жёсткие структурные связи кристаллизационного типа.
Условная граница между скальными и полускальными грунтами принимается по прочности на одноосное сжатие (Rc ? 5 МПа — скальные грунты, Rc < 5 МПа — полускальные грунты).
Грунт сезонномёрзлый — грунт, находящийся в мёрзлом состоянии периодически в течение холодного сезона.
Грунт сыпучемёрзлый (синоним — «сухая мерзлота») — крупнообломочный и песчаный грунт, имеющий отрицательную температуру, но не сцементированный льдом и не обладающий силами сцепления.
Грунт твердомёрзлый — дисперсный грунт, прочно сцементированный льдом, характеризуемый относительно хрупким разрушением и практически несжимаемый под внешней нагрузкой.
Техногенные грунты - грунты, созданные в процессе производственной и хозяйственной деятельности человека.
Золы — продукт сжигания твёрдого топлива.
Золошлаки — продукты комплексного термического преобразования горных пород и сжигания твёрдого топлива.
Ил — водонасыщенный современный осадок преимущественно морских акваторий, содержащий органическое вещество в виде растительных остатков и гумуса. Обычно верхние слои ила имеют коэффициент пористости е >= 0,9, текучую консистенцию IL % по массе.
Коэффициент водонасыщения Sr, д. ед. — степень заполнения объёма пор водой. Определяется по формуле:
, (A.4)где W — природная влажность грунта, д. ед.;
е — коэффициент пористости;
?s — плотность частиц грунта, г/см3;
?w — плотность воды, принимаемая равной 1 г/см3.
Коэффициент выветрелости Кwr, д. ед. — отношение плотности выветрелого грунта к плотности монолитного грунта.
Коэффициент выветрелости крупнообломочных грунтов Кwr, д. ед., определяется по формуле
, (А.7)где К1 — отношение массы частиц размером менее 2 мм к массе частиц размером более 2 мм после испытания на истирание в полочном барабане;
К0 — то же, в природном состоянии.
Коэффициент истираемости крупнообломочных грунтов Кfr, д. ед., определяется по формуле:
, (A.8)где q1 — масса частиц размером менее 2 мм после испытания крупнообломочных фракций грунта (частицы размером более 2 мм) на истирание в полочном барабане;
q0 — начальная масса пробы крупнообломочных фракций (до испытания на истирание).
Коэффициент пористости е определяется по формуле:
, (A.5)где ?s — плотность частиц грунта, г/см3;
?d — плотность сухого грунта, г/см3.
Коэффициент размягчаемости в воде Кsof, д. ед. — отношение пределов прочности грунта на одноосное сжатие в водонасыщенном и в воздушно-сухом состоянии.
Коэффициент сжимаемости мёрзлого грунта ?f — относительная деформация мёрзлого грунта под нагрузкой.
Криогенные структурные связи грунта — кристаллизационные связи, возникающие во влажных дисперсных и трещиноватых скальных грунтах при отрицательной температуре в результате сцементирования льдом.
Криогенная текстура — совокупность признаков сложения мерзлого грунта, обусловленная ориентировкой, относительным расположением и распределением различных по форме и размерам ледяных включений и льда-цемента.
Лёд (синоним — грунт ледяной) — природное образование, состоящее из кристаллов льда с возможными примесями обломочного материала и органического вещества не более 10 % (по объёму), характеризующееся криогенными структурными связями.
Льдистость грунта за счёт видимых ледяных включений ii, д. ед. — отношение содержащегося в нём объёма видимых ледяных включений к объёму мёрзлого грунта. Определяется по формуле:
, (A.5)?s — плотность мёрзлого грунта, г/см3;
?i — плотность льда, принимаемая равной 0,9 г/см3;
Wtot — суммарная влажность мёрзлого грунта, д. ед.;
Wm — влажность мёрзлого грунта, расположенного между ледяными включениями, д. ед.
Ww — влажность мёрзлого грунта за счёт содержащейся в нём при данной отрицательной температуре незамёрзшей воды, д. ед.
Намывные грунты — техногенные грунты, перемещение и укладка которых осуществляются с помощью средств гидромеханизации.
Насыпные грунты — техногенные грунты, перемещение и укладка которых осуществляются с использованием транспортных средств, взрыва.
Органическое вещество — органические соединения, входящие в состав грунта в виде неразложившихся остатков растительных и животных организмов, и также продуктов их разложения и преобразования.
Относительная деформация набухания без нагрузки ?sw, д. ед. — отношение увеличения высоты образца грунта после свободного набухания в условиях невозможности бокового расширения к начальной высоте образца природной влажности. Определяется по ГОСТ 24143-80.
Относительная деформация просадочности ?s, д. ед. — отношение разности высот образцов, соответственно, природной влажности и после его полного водонасыщения при определённом давлении к высоте образца природной влажности. Определяется по ГОСТ 23161-78.
Относительное содержание органического вещества Ir, д. ед. — отношение массы сухих растительных остатков к массе абсолютно сухого грунта.
Песок — несвязный минеральный грунт, в котором масса частиц размером меньше 2 мм составляет более 50 % (Ip = 0).
Плотность скелета грунта — плотность сухого грунта ?d, г/см3, определяемая по формуле
, (A.2)где ? — плотность грунта, г/см3;
W — влажность грунта, д. ед.
Показатель текучести IL — отношение разности влажностей, соответствующих двум состояниям грунта: естественному W и на границе раскатывания Wp, к числу пластичности Ip.
Почва — поверхностный плодородный слой дисперсного грунта, образованный под влиянием биогенного и атмосферного факторов.
Предел прочности грунта на одноосное сжатие Rc, МПа — отношение нагрузки, при которой происходит разрушение образца, к площади первоначального поперечного сечения.
Природные образования, изменённые в условиях естественного залегания — природные грунты, для которых средние значения показателей химического состава изменены не менее чем на 15 %.
Природные перемещённые образования — природные грунты, перемещённые с мест их естественного залегания, подвергнутые частично производственной переработке в процессе их перемещения.
Промышленные отходы — твёрдые отходы производства, полученные в результате химических и термических преобразований материалов природного происхождения.
Сапропель — пресноводный ил, образовавшийся на дне застойных водоёмов из продуктов распада растительных и животных организмов и содержащий более 10 % (по массе) органического вещества в виде гумуса и растительных остатков. Сапропель имеет коэффициент пористости е > 3, как правило, текучую консистенцию IL > 1, высокую дисперсность — содержание частиц крупнее 0,25 мм обычно не превышает 5 % по массе.
Состав грунта вещественный — категория, характеризующая химико-минеральный состав твёрдых, жидких и газовых компонентов.
Степень водопроницаемости — характеристика, отражающая способность грунтов пропускать через себя воду и количественно выражающаяся в коэффициенте фильтрации Кф, м/сут. Определяется по ГОСТ 25584-90.
Степень заполнения объёма пор мёрзлого грунта льдом и незамёрзшей водой Sr, д. ед., определяется по формуле:
, (A.9)где Wic — влажность мёрзлого грунта за счёт порового льда, цементирующего минеральные частицы (лёд-цемент), д. ед.;
Ww — влажность мёрзлого грунта за счёт содержащейся в нём при данной отрицательной температуре незамёрзшей воды, д. ед.;
?s — плотность частиц грунта, г/см3;
еf — коэффициент пористости мёрзлого грунта;
?w — плотность воды, принимаемая равной 1 г/см3.
Степень засолённости — характеристика, определяющая количество водорастворимых солей в грунте Dsal, %.
Степень зольности торфа Dds, д. ед. — характеристика, выражающаяся отношением массы минеральной части грунта ко всей его массе в абсолютно сухом состоянии. Определяется по ГОСТ 11306-83*.
Степень морозной пучинистости — характеристика, отражающая способность грунта к морозному пучению, выражается относительной деформацией морозного пучения ?fh, д. ед. (доли единицы), которая определяется по формуле:
, (A.1)где ho,f — высота образца мёрзлого грунта, см;
ho — начальная высота образца талого грунта до замерзания, см.
Степень неоднородности гранулометрического состава Cu — показатель неоднородности гранулометрического состава. Определяется по формуле
, (А.3)где d60, d10 — диаметры частиц, мм, меньше которых в грунте содержится соответственно 60 и 10 % (по массе) частиц.
Степень плотности песков ID определяется по формуле
, (A.6)где е — коэффициент пористости при естественном или искусственном сложении;
emax — коэффициент пористости в предельно-плотном сложении;
emin — коэффициент пористости в предельно-рыхлом сложении.
Степень разложения торфа Ddp, д. ед. — характеристика, выражающаяся отношением массы бесструктурной (полностью разложившейся) части, включающей гуминовые кислоты и мелкие частицы негумицированных остатков растений, к общей массе торфа. Определяется по ГОСТ 10650-72.
Степень растворимости в воде — характеристика, отражающая способность грунтов растворяться в воде и выражающаяся в количестве воднорастворимых солей, qsr, г/л.
Структура грунта — пространственная организация компонентов грунта, характеризующаяся совокупностью морфологических (размер, форма частиц, их количественное соотношение), геометрических (пространственная композиция структурных элементов) и энергетических признаков (тип структурных связей и общая энергия структуры) и определяющаяся составом, количественным соотношением и взаимодействием компонентов грунта.
Суммарная льдистость мёрзлого грунта itot, д. ед. — отношение содержащегося в нём объёма льда к объёму мёрзлого грунта. Определяется по формуле:
, (A.10)Текстура грунта — пространственное расположение слагающих грунт элементов (слоистость, трещиноватость и др.).
Температура начала замерзания (оттаивания) Т (Т) — температура, °С, при которой в порах грунта появляется (исчезает) лёд.
Техногенные грунты — естественные грунты, изменённые и перемещённые в результате производственной и хозяйственной деятельности человека, и антропогенные образования.
Торф — органический грунт, образовавшийся в результате естественного отмирания и неполного разложения болотных растений в условиях повышенной влажности при недостатке кислорода и содержащий 50 % (по массе) и более органических веществ.
Число пластичности Ip — разность влажностей, соответствующая двум состояниям грунта: на границе текучести WL и на границе раскатывания Wp.
WL и Wp определяют по ГОСТ 5180-84.
Шлаки — продукты химических и термических преобразований горных пород, образующиеся при сжигании.
Шламы — высокодисперсные материалы, образующиеся в горнообогатительном, химическом и некоторых других видах производства.
Классификация грунтов[1][править]
«основы нормирования и обеспечения требуемой степени уплотнения земляного полотна автомобильных дорог» // технорма.ru
- образец (1) вынимают из шаблона, укладывают в марлевую (в один слой) рубашку (4), помещают между пачками (10-20 слоев каждая) фильтровальной бумаги (3), а затем - между двумя металлическими пластинами (2) диаметром 60 мм (рис. 19);
- подготовленный образец помещают под пресс любой конструкции с точностью фиксации нагрузки до 0,05 МПа и прикладывают статическую нагрузку Ро, величина которой зависит от числа пластичности грунта 1р (рис. 20, кривая 1) и выдерживают в течение 5 мин;
- после разгрузки пресса образец вынимают и определяют его влажность весовым методом, которая принимается за оптимальную W0.
Рис. 20. Зависимость нагрузки Ро (1), остаточного коэффициента водонасыщения Gо (2) и плотности частиц грунта ρs (3) от числа пластичности
Для определения максимальной плотности предварительно в зависимости от числа пластичности грунта по рис.20 устанавливают величину остаточного коэффициента водонасыщения грунта (кривая 2) и плотность частиц грунта (кривая 3). Значение последней устанавливают по графику при отсутствии результатов прямого испытания.
Значение максимальной плотности грунта рассчитывают по формуле
где Δв - плотность воды;
W0 - найденная оптимальная влажность, доли единицы.
6. ЗАКЛЮЧЕНИЕ
В изложенном материале можно выделить следующие основные позиции:
1 Уплотнение грунтов в дорожном строительстве - это одна из основополагающих проблем, разрабатываемых дорожной наукой на протяжении более 50 лет. На результатах этих научных разработок основываются нормы плотности, отраженные в основных нормативных документах по строительству дорог, а также технология и механизация работ по уплотнению грунтов.
2. Нормативные значения степени уплотнения определяются с учетом следующих основных положений:
- грунт, имеющий заданную влажность, нельзя уплотнить кратковременно действующей нагрузкой (при сколь угодно большом ее значении и числе приложений) до плотности выше плотности, соответствующей суммарному объему пор, равному объему воды, содержащейся в грунте при данной влажности. Большее уплотнение грунта возможно только после предварительного снижения его влажности; под воздействием факторов водно-теплового режима и напряжений от временной и постоянной нагрузок первоначально получаемая при уплотнении плотность грунта изменяется в годовом и многогодовом циклах. Степень изменения зависит от параметров воздействующих факторов; конструкции дорожной одежды, расположенной на поверхности земляного полотна; состава грунта и его исходного состояния по плотности и влажности. При прочих равных условиях наиболее стабилен грунт, имеющий при уплотнении влажность, близкую к максимальной молекулярной влагоемкости, когда практически вся вода находится в связанном состоянии. Эта влажность оптимальна для получения структуры грунта, наиболее стабильной к воздействию факторов водно-теплового режима;
- возможный предел уплотнения заданного грунта при заданной его влажности достигается при определенном уровне уплотняющего воздействия: величине возникающих напряжений и суммарной длительности их действия. Минимальное уплотняющее воздействие, которое позволяет достичь предела уплотнения грунта при влажности, обеспечивающей стабильную структуру, является наиболее рациональным с точки зрения затрат на уплотнение. В связи с этим уплотняющие средства должны позволять получить такое воздействие при приемлемой для практики суммарной длительности приложения уплотняющей нагрузки (число проходов и т.п.);
- в лабораторных условиях эталонную зависимость плотности грунта от его влажности можно получить методом стандартного уплотнения. Испытаниями на стандартное уплотнение определяются максимальная плотность и оптимальная влажность;
- из известных методов стандартного уплотнения оптимальную влажность, близкую максимальной молекулярной влагоемкости, дают обычный метод Проктора и метод Союздорнии. Установлено, что предел уплотнения достигается при этой влажности уплотняющими средствами средней массы (катки 8 т) за приемлемое число проходов и при соответствующем ограничении толщины уплотняемого слоя. Использование более тяжелой техники позволяет при той же влажности грунта уменьшить требуемое число приложений нагрузки и увеличить допустимую толщину уплотняемого слоя;
- обследование состояния по плотности насыпей земляного полотна, проработавших не менее 20 лет, показало, что плотность грунта в них близка к максимальной плотности при стандартном уплотнении по обычному методу Проктора или методу Союздорнии.
3. Выявленные закономерности позволили установить нормы уплотнения на основе параметров, получаемых по методам стандартного уплотнения, через коэффициенты уплотнения (отношение требуемой плотности сухого грунта к максимальной плотности сухого грунта при стандартном уплотнении). Для глинистых грунтов по нормам ведущих стран в пересчете на метод Союздорнии они колеблются от 1,01 до 0,90. Отечественные нормы по минимальным коэффициентам уплотнения, отвечающие фактическим коэффициентам уплотнения насыпей, проработавших не менее 20 лет, являются одними из самых жестких среди норм для глинистых грунтов в насыпях автомобильных дорог. Нет ни одного примера, объективно свидетельствующего о недостаточности норм, действующих в настоящее время в России.
4. Нормативные положения по уплотнению, принятые на основе метода стандартного уплотнения, касаются не только плотности, но и влажности грунта при уплотнении. При этом степень увлажнения грунта оценивается тоже как отношение фактической влажности к оптимальной по стандартному методу. Нормы плотности (особенно ниже 1,0) могут быть обеспечены при так называемой допустимой влажности, которая несколько превышает оптимальную по методу стандартного уплотнения и зависит от требуемой плотности. При влажности грунта больше допустимой нормы плотности не обеспечиваются никакими уплотняющими средствами.
5. Природная влажность глинистых грунтов в I-II и частично III дорожно-климатических зонах в 80% случаев превышает оптимальную по методу Союздорнии. С учетом того, что допускаемая влажность несколько больше оптимальной, нормы плотности выше 1,0 не могут быть обеспечены по ограничению, которое связано с природной влажностью более чем для 65% объема грунтов. Это не позволяет говорить о повышении норм плотности уже по этой причине. Дополнительным ограничением является снижение плотности грунта рабочего слоя земляного полотна во времени под воздействием водно-теплового режима (промерзание - оттаивание - увлажнение - высушивание).
6. Поведение грунта земляного, полотна под действием водно-теплового режима и нагрузок зависит не только от свойств грунта, но и от конструкции земляного полотна и дорожной одежды. Земляное полотно (рабочий слой) и дорожная одежда проектируются комплексно. Принимаемые в расчет значения прочностных и деформационных характеристик грунтов, а также водно-температурных и силовых воздействий на рабочий слой увязаны с конструкцией дорожной одежды.
7. В случаях, когда с помощью конструктивных специальных мер (термоизолирующие, гидроизолируюшие слои и т.п.) создается возможность сохранить полученную при строительстве плотность грунта, нормы рекомендуют рассматривать варианты повышенного уплотнения. При этом влажность грунта в момент уплотнения не должна препятствовать получению повышенной плотности. Это возможно в южных регионах (при производстве работ в летнее время) или при введении в технологический процесс подсушивание грунта. Такие решения принимаются на основе технико-экономических расчетов.
Альтернативой уплотнению грунта рабочего слоя могут служить его улучшение и укрепление с помощью добавок и вяжущих, а в ряде случаев - применение конструктивных специальных решений (устройство прослоек и т.п.).
8. Существующие уплотняющие средства позволяют обеспечить требуемые коэффициенты уплотнения при влажности грунта в пределах от нормальной до допустимой. При этом, в зависимости от их вида и мощности меняются толщина уплотняемого слоя и число приложения нагрузки.
При снижении влажности при уплотнении может потребоваться применение более тяжелых уплотняющих средств. Эта же проблема возникает при получении более высокой плотности при пониженной влажности грунта.
Выбор оптимальных средств - это самостоятельная задача, аналогичная проблеме повышения эффективности технологии уплотнения.
9. Основным недостатком технологии и организации уплотнения является несбалансированность темпов строительства земляного полотна с номенклатурой и количеством уплотняющих средств у конкретного подрядчика. Кроме того, должен быть ужесточен действенный контроль технологии уплотнения (контроль не только плотности, но и исходной влажности грунта, его состава, (однородности и т.п.).
Таким образом, из изложенного выше можно сделать следующие общие выводы:
1. Действующие нормы плотности земляного полотна основаны на результатах комплексных многолетних исследований. Они увязаны со свойствами грунтов, конструкциями земляного полотна и дорожных одежд, их напряженным состояниям, воздействием водно-теплового режима, с условиями увлажнения основной массы грунтов в их природном залегании, возможностями уплотняющей техники. Иными словами, нормы всесторонне учитывают как природные факторы и особенности работы земляного полотна, так и технологические и экономические аспекты. В настоящее время нет объективных доказательств недостаточности этих норм, поэтому постановка этого вопроса, особенно в части глинистых грунтов, не имеет оснований.
2. Имеющиеся в настоящее время уплотняющие средства по своим техническим параметрам позволяют при допустимой влажности грунта обеспечивать требуемые коэффициенты уплотнения. Вопрос заключается только в том, что разные средства обеспечивают различный уровень экономичности процесса уплотнения (производительность, расход горючего и т.п.) и требуют грамотного их применения в технологии уплотнения.
3. В проблеме уплотнения существует несколько аспектов, проведение исследований по которым могло бы быть, на наш взгляд, полезным без претензий на опасный и необоснованный радикализм ужесточения норм:
- необходимо более подробно изучить проблему большей дифференциации норм плотности с учетом особенностей территорий и дорожной сети и с большим отражением в них статистической природы показателем степени уплотнения грунта. При этом региональную дифференциацию норм плотности следует сочетать с дифференциацией расчетных характеристик грунта земляного полотна, используемых при проектировании дорожных одежд;
- следует усилить работы по созданию системы и средств оперативного контроля грунтов, используемых в земляном полотне (степень увлажнения, состав, степень уплотнения);
- необходимо продолжить совершенствование технологии и средств уплотнения грунтов в дорожном строительстве с учетом особой важности этого элемента технологии в обеспечении качества и долговечности конструкции.
ЛИТЕРАТУРА
1. Лебедев А.Ф. Уплотнение грунтов при различной их влажности и различной уплотняющей работе. - Стройвоенмориздат. М.,1949, 56 с.
2. Методические рекомендации по уточнению норм плотности грунтов насыпей автомобильных дорог в различных региональных условиях. - Союздорнии. М., 1988, 20 с.
3. Хархута Н.Я., Васильев Ю.М., Орхименко Р.К. Уплотнение грунтов дорожных насыпей. М., Автотрансиздат, 1953, 144 с.
4. Методические рекомендации по ускоренному определению оптимальной влажности и максимальной плотности глинистых грунтов при сооружении земляного полотна автомобильных дорог. - Союздорнии. М., 1990.
5. Форссблад Л. Вибрационное уплотнение грунтов и оснований./Пер. с анг: И.В. Гагариной. - М.: Транспорт, 1937.
6. Иванов Н.Н., Телегин М.Я. Уплотнение дорожных насыпей. - Новости: дорожной техники, №18. Изд. Дорнии. 1938.
7. Казарновский З.Д., Мирсшкин Ч.К. Сравнение норм плотность земляного полотна, основанных на разных методах стандартного уплотнения. - Автомобильные дороги, №12. М., 1994.
8. Хархута Н.Я., Васильев Ю.М. Прочность, устойчивость и уплотнение грунтов земляного полотна автомобильных дорог. - М.: Транспорт, 1975.
9. Рувинский В.И. Оптимальные конструкции земляного полотна (на основе регулирования водно-теплового режима). Изд. 2-е, переработ, и дополн. - М.: Транспорт, 1992.
10. Водно-тепловой режим земляного полотна и дорожных одежд/Под ред. И.А. Золотаря, Н.А. Пузакова, В.М. Сиденко. - М.: Транспорт, 1971.
11. Казарновский В.Д., Мирошкин А.К. Без соблюдения норм плотности не будет качества. - Автомобильные дороги, №5. М., 1993.
12. Сергеев Е.М, Голодковская Г.А., Зиангиров Р.С, Осипов В.И., Трофимов В.Т. Грунтоведение. - Изд. МГУ, М., 1971.
13. Инструкция по проектированию дорожных одежд нежесткого типа. ВСН 46-83. - М.: Транспорт, 1985.
14. СНиП 2.05.02-85. Автомобильные дороги. - М.: ЦИТП Госстроя СССР, 1986.
15. Бируля А.К. Сезонные изменения влажности и плотности уплотненного грунта в дорожном полотне. - В сб. Труды ХАДИ, вып. 18. ХГУ, 1956.
16. Телегин М.Я. Методы уплотнения дорожных насыпей. - М., Дориздат, 1952.
17. Васильев Ю.М. Основы энергетической теории стабильности грунтов и применение ее в практике строительства автомобильных дорог. Научный доклад, обобщающий цикл опубликованных работ на соискание, ученой степени д-ра техн. наук. - М., МАДИ, 1990.
18. Шкицкая Н.Ю. Ускоренный метод определения оптимальной влажности глинистых грунтов при сооружении земляного полотна автомобильных дорог. Автореф. дисс. канд. техн. наук. - М.,1992.
19. Герсеванов М.Н. Основы динамики фунтовой массы. - М.: ОНТИ, 1937.
20. Бабков В.Ф., Безрук В.М. Основы грунтоведения и механики грунтов. - М.: Высшая школа, 1976.
21. СНиП 3.06.03-85. Автомобильные дороги. - М.: ЦИТП Госстроя СССР,1986.
22. Уплотнение и укладка дорожных материалов (теория и практика)./Перевод с англ. - Изд-е Дорожного учебного комбината и Дорожного комитета Ленинградской обл. ГПП им. Ивана Фёдорова, 1994.
23. Кузахметова Э.К. Основы прогноза осадки высоких насыпей при использовании глинистых грунтов с влажностью выше оптимальной. Автореф. д-ра техн. наук. - М., 1997.
24. Рувинский В.И. Эффективность применения пенопласта STYROFOAM в дорожном строительстве России. - М.: Транспорт, 1996.
25. Казарновский В.Д. Степень уплотнения грунта и его сопротивляемость сдвигу. - Автомобильные дороги, №12. М., 1961.
26. Каюмов А.Д. Использование недоувлажненных лессовых грунтов для сооружения земляного полотна автомобильных дорог ЦБНТИ - Автомобильные дороги, №6. М., 1989
27. Лейтланд И.В. Обоснование и разработка пенетрационного экспресс-метода контроля степени увлажнения глинистого грунта при сооружении земляного полотна автомобильных дорог. Автореф. дисс. канд. техн. наук. - М., 1999.